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Dynamic structure factor for a two-component model plasma
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Analytical results for the structure factor of a two-component model plasma that describe an electron-ion
plasma with modified interaction are derived from a Green function approach in different approximations. The
random-phase approximation is improved by including the dynamic collision frequency, and results for the
long-wavelength limit are extended to arbitrary wave numbers using the Mermin ansatz. After taking the
classical limit of the resulting expressions, they are compared with molecular dynamics simulation results for
the classical two-component model plasma.
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I. INTRODUCTION

The two-component plasma~TCP! is an interesting sys
tem because it can model properties of different real plasm
in particular hydrogen or the electron-hole plasma. It cons
of two speciesc @e.g., electronse and protons~ions! i# with
massesmc and chargesec , and the interaction is given b
the Coulomb potentialVcd

C (r )5eced /(4pe0r ). In equilib-
rium it is described by the temperatureT and the densities
nc . For simplicity we assume singly charged ions,ei
52ee5e, and charge neutrality,ni5ne5n. The properties
of such a system can be evaluated using the method
quantum statistics@1#. Linear response properties have r
cently been considered by Reinholzet al. @2#, denoted below
as paper I. These many-particle approaches are based
perturbative treatment of the Coulomb interaction. After p
forming partial summations, results are found which are
act in the limiting case of weak coupling,G!1, and which
can be used to find interpolations applicable in a large reg
of the parametersT,n. Here, the coupling parameterG
5e2/(4pe0kBT)(4pn/3)1/3 describes the ratio of potentia
energy and kinetic energy.

On the other hand, the properties of strongly correla
classical many-body systems can be successfully modele
fully numerical treatments. As they are not restricted to
rameter regions where approximations within perturbat
theory are applicable, they can be used to verify analyt
results, e.g., at strong couplingG>1. For instance, the dy
namic structure factor of a TCP-like system was evalua
by Pschiwul and Zwicknagel@3,4# using molecular dynamics
~MD! computer simulations, where the classical equation
motion are solved numerically for an appropriate number
point particles. But in general, quantum effects have to
taken into account which arise~i! due to the symmetry prop
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erties for states of identical particles, and~ii ! due to the un-
certainty principle. As long as the density is lower than t
degeneration density, effects of the symmetry~such as Pauli
blocking! can be neglected, and the Fermi distribution fun
tion can be replaced by the Maxwell distribution. The unc
tainty principle is of relevance in particular for interactin
particles at short distances. Within a quasiclassical appr
mation, the Coulomb interaction can be replaced by an
fective interaction which corresponds to a spatial aver
over distances characterized by the thermal waveleng
Such quasiclassical effective interactions were derived
Kelbg @5# and by Deutsch@6# from quantum statistical ex
pressions~Slater sums, see@1#!.

In this paper we will consider the general form of th
interaction

Vcd
L ~r !5

eced

4pe0r
~12e2r /Lcd!, ~1!

whereLcd are free parameters that define the model plas
By taking Lcd5(2p\2/mcdkBT)1/2, with mcd

215mc
21

1md
21, we retrieve the quasiclassical effective interaction

@5,6# as discussed above. This modified potential avoids
Coulomb collapse in a classical treatment of the system.
it is still an unsolved problem whether and under which co
ditions a quasiclassical MD simulation based on interact
~1! can reproduce the dynamic properties of a TCP that
to be treated by quantum statistics. We will not discuss t
open question either. Instead, we consider in the followin
system where theLcd are given fixed parameters. Th
model system of charged particles interacting via the pot
tial ~1! will be denoted as a two-component model plas
~TCMP!. In particular we are interested in the well define
classical limit of this system, formally obtained if the lim
\→0 is considered. This classical two-component mo
plasma~CTCMP! can be rigorously treated by classical m
chanics and MD simulations. The available computatio
power allows, however, only rather small sampling tim
©2001 The American Physical Society10-1
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and system sizes. In certain limiting cases such as high
quencies or low densities, simulations should be chec
against analytical results which then may represent be
approximations. In the present work, MD simulations of t
dynamic structure factor for a CTCMP will be compar
with analytical results, and the validity of different ap
proaches will be discussed.

Therefore, in Secs. II–IV we first derive analytical e
pressions for the TCMP by extending the quantum statist
treatment of a system interacting via the Coulomb poten
~TCP!, as given in~I!, to systems with the effective interac
tion ~1!. In their classical limit these expressions then d
scribe the CTCMP and allow an adequate comparison w
MD simulations. This will be done in Sec. VI, after a discu
sion of the CTCMP and the MD simulation technique in S
V. The final conclusions are drawn in Sec. VII.

II. DYNAMIC RESPONSE OF A TWO-COMPONENT
MODEL PLASMA

We consider a nonrelativistic charged particle syst
with componentsc ~massmc , chargeec , spinsc! described
by the Hamiltonian

H5(
p,c

Ep
cap,c

† ap,c

1
1

2 (
pp8q,cc8

Vcc8~q!ap2q,c
† ap81q,c8

† ap8,c8ap,c . ~2!

Ep
c5\2p2/(2mc) is the kinetic energy,Vcc8(q) is an ~arbi-

trary! interaction potential, andap,c
† denotes the creation op

erator of a particle of componentc with momentum\pW . In
particular, we will restrict ourselves to a two-component~hy-
drogenlike! plasma consisting of electrons and ions~protons!
so thatc5e,i . The spin variable is included in the indexc,
and spin summations are performed in the final expressi

In the case of the TCMP, the interaction is obtained fro
Eq. ~1! as the Fourier transform

Vcc8~q!5Vcc8
L

~q!5
ecec8

e0V0~q21Lcc8
2 q4!

, ~3!

whereV0 is the normalization volume. The Coulomb inte
action ~TCP! is included as a special case whenLcc850.

Important quantities are the partial equilibrium correlati
functions of the Fourier transform of local density fluctu
tions dnk

c5V0
21Spdnp,k

c with the fluctuations of occupation
numbersdnp,k

c 5ap2k/2,c
† ap1k/2,c2^ap2k/2,c

† ap1k/2,c&eq,

xcc8~kW ,v!5V0

i

\ E
0

`

dtei ~v1 ih!t^@dnk
c~ t !,dnk

c8#&eq. ~4!

Further equivalent definitions in terms of correlation fun
tions can be found, e.g., in Ref.@1#.

Related quantities are the density-density response f
tion xnn(kW ,v)5Scc8xcc8(k

W ,v) and the charge-charge de
05641
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sity response functionxqq(kW ,v)5Scc8ecec8xcc8(k
W ,v). The

relation to the charge-density dynamic structure factor is

Sqq~kW ,v!5
\

n

1

12e2b\v Im xqq~kW ,v!. ~5!

In the long-wavelength limit (k→0), a collision fre-
quencyn(v) can be introduced in connection with a gene
alized Drude formula for the dynamic conductivity, for d
tails see paper I. With the plasma frequencyvpl

2

5Scec
2nc /(e0mc) we have

n~v!52 i e0k2
vpl

2

v

1

xqq~0,v!
2 i

vpl
2

v
1 iv. ~6!

The use of perturbation theory to calculate the partial
sponse functions~4! and the related quantities will be dis
cussed in Sec. III. We give here only the lowest orders
perturbation theory, where we find the well-known result f
the polarization function@7#

xcc8
0

~kW ,v!5dcc8

1

V0
(

p

f p1k/2
c 2 f p2k/2

c

DEp,k
c 2\~v1 ih!

5xc
0~kW ,v!dcc8 ,

~7!

where DEp,k
c 5Ep1k/2

c 2Ep2k/2
c 5\2kW•pW /mc , f p

c5@exp(bEp
c

2bmc)11#21 denotes the Fermi distribution function,b
51/(kBT) is the inverse temperature, andmc is the chemical
potential of speciesc. The limit h→0 has to be taken afte
the thermodynamic limit. Analytical expressions for vario
limiting cases can be found in@8#. In particular, we have
limk→0 xc

0(k,v)5nck
2/(mcv

2) and limk→0 xc
0(kW ,0)

52bnc . The standard random-phase approximation~RPA!
is introduced performing summation over ring diagrams@9#,
equivalent to the introduction of a screened intera
tion Vcc8

sc (kW ,v)5Vcc8(k
W )1SdVcd(kW )xd

0(kW ,v)V0Vdc8
sc (kW ,v).

Solving

xcc8
RPA

~kW ,v!5xc
0~kW ,v!dcc81xc

0~kW ,v!V0Vcc8
sc

~kW ,v!xc8
0

~kW ,v!

we find the RPA expression, cf.@4#

xee
RPA~kW ,v!

5
xe

02xe
0V0Vii x i

0

12xe
0V0Vee2x i

0V0Vii 1xe
0x i

0V0
2~VeeVii 2Vei

2 !
,

~8!

xei
RPA~kW ,v!

5
xe

0V0Veix i
0

12xe
0V0Vee2x i

0V0Vii 1xe
0x i

0V0
2~VeeVii 2Vei

2 !
,

and the corresponding expressions interchangee and i. The
dependence onkW ,v has been dropped. The complete RP
expression for the TCMP with model interaction~1! follows
as
0-2
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xqq
RPA~kW ,v!

5
xe

01x i
02xe

0x i
0V0~Vii 1Vee12Vei!

12xe
0V0Vee2x i

0V0Vii 1xe
0x i

0V0
2~VeeVii 2Vei

2 !
.

~9!

In the special caseLcc850 ~i.e., the case of the TCP with
Coulomb interaction!, the expressions simplify considerab
since the interactions between the different species have
sameq behavior, depending on the species via the chargeec
only.

III. PERTURBATION EXPANSION
FOR THE INVERSE RESPONSE FUNCTION
AND DYNAMIC COLLISION FREQUENCY

The inverse response functionM (kW ,v), defined by

xqq~kW ,v!5 ibV0

k2

v

1

M ~kW ,v!
, ~10!
r
in
c

ie
be
n

fo

r
s
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can be expressed in terms of correlation functions allow
for a systematic evaluation within perturbation theory, s
paper I and further references given there. In the first or
with respect to the interaction, the RPA expressions are
tained. Collisions within the system are described consid
ing the second and higher orders of perturbation theory.

The evaluation of the second order ofM (kW ,v) for arbi-
trary kW ,v is rather complex. As a special case, we consi
the long-wavelength limitk→0, as done in paper I, wher
simple analytical expressions can be given. Withxc

0(0,v)
given above and limk→0 Vcc8(k)}k22 for the long-range po-
tentials considered here, we have according to paper I for
dynamic collision frequency~6!

n~v!5
bV0

e0vpl
2 (

cc8

ecec8
mcmc8

Fcc8~v!, ~11!

with the dynamic force-force correlation function
Fcc8~v!5
1

V0
2 (

pp8qq8p1p18dd8
Vcd~q!Vc8d8~q8!qzqz8

3^ap2q/2,c
† ap11q/2,d

† ap12q/2,dap1q/2,c ;ap81q8/2,c8
† ap

182q8/2,d8
†

ap
181q8/2,d8ap82q8/2,c8&v1 ih , ~12!
l-

n

where (qz5qW •kW /k). Using perturbation theory, results fo
the force-force correlation function will be given below
different approximations. For a TCP with Coulomb intera
tion, the static limitv→0 yielding the dc conductivity was
considered in different works, see@10#, in particular@11# for
the electron-ion plasma. The extension to finite frequenc
for the Coulomb interaction considered in paper I will
generalized here for arbitrary long-range interactio
Vcc8(q).

A. Born approximation

The evaluation of the force-force correlation function~12!
in the Born approximation, see paper I for details, gives
c85c

Fcc
Born~v!5

i\

bV0
2 (

pqp8d

eb~DE
p8,q
d

2DEp,q
c

!21

DEp8,q
d

2DEp,q
c qz

2Vcd
2 ~q!

3
f p81q/2

d
~12 f p82q/2

d
! f p2q/2

c ~12 f p1q/2
c !

\~v1 ih!1DEp8,q
d

2DEp,q
c

3@12dcd#. ~13!

Exchange terms are neglected. Only a contribution fod
Þc remains. Forc85dÞc we find the same expression a
-

s

s

r

above with the opposite sign, and we haveFee
Born(v)

5Fii
Born(v)52Fei

Born(v). According to Eq. ~11!, the
dynamic collision frequency in the Born approximation fo
lows as

nBorn~v!5
4bV0

nmei
Fee

Born~v!, ~14!

replacing in Eq.~13! c by e andd by i. The factor 4 is due to
the summation over spin variables,se5si51/2. For the
TCMP with interaction~1! the high-frequency behavior ca
be evaluated as

lim
v→`

RenL,Born~v!

}
e2b\v/22eb\v/2

\v E d3q
q2

3
Vei

L2
~q!E d3p

3dS \v2
\2pW •qW

me
DexpF2bS \2p2

2me
1

\2q2

8me
D G

}
e2b\v/22eb\v/2

\v

q3

~q21Lei
2 q4!2

3expF2bS v2me

2q2 1
\2q2

8me
D GU

q5A2mev/\

}v27/2,

~15!
0-3
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A. SELCHOWet al. PHYSICAL REVIEW E 64 056410
where a saddle-point approximation has been applied. It
fers from the TCP case with Coulomb interaction whe
RenTCP,Born(v)}v23/2 was derived~paper I!, which is re-
lated to the different behavior of the interaction potentials
large values ofq.

The Born approximation for the dynamic collision fre
quency has to be improved~i! considering dynamic screen
ing, which is of importance at small values ofq and gives a
reduction of the dynamic collision frequency especially
low frequencies,~ii ! considering strong collisions being im
portant at large values ofq, ~iii ! considering renormalization
which is of importance particularly below the plasm
frequency.

B. Dynamic screening

The interaction in the TCP as well as in the TCMP is lo
ranged so that the Fourier transform behaves
limq→0 V(q)}q22. Screening is then essential to avoid t
singularity of the collision integral atq→0, which leads to a
n.
n
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lt

ic
h

s
al
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divergent static collision frequencynBorn(0). According to
Fig. 2 of paper I, we have to sum up ring diagrams in eva
ating the Green function describing the force-force corre
tion function. Using the spectral representation for t
density-density correlation function we find„nB(v)
5@exp(b\v)21#21

…

nRPA~v!5 i
\

V0nmei
(

q

q2

3
Vei~q!Vei~q!E dv8

p E dv9

p

3
nB~v8!2nB~2v9!

~v1 ih1v81v9!~2v82v9!

3@ Im xee~q,v81 ih!Im x i i ~2q,v91 ih!

2Im xei~q,v81 ih!Im x ie~2q,v91 ih!#,

~16!

where the RPA expression~8!,
Im xee
RPA~kW ,v!5

Im xe
0@122Vii Rex i

01Vii
2 ux i

0u2#1Im x i
0Vei

2 uxe
0u2

u12xe
0Vee2x i

0Vii 1xe
0x i

0~VeeVii 2Vei
2 !u2

,

~17!

Im xei
RPA~kW ,v!5

Im xe
0@Vei Rex i

02VeiVii ux i
0u2#1Im x i

0@Vei Rexe
02VeiVeeuxe

0u2#

u12xe
0Vee2x i

0Vii 1xe
0x i

0~VeeVii 2Vei
2 !u2

,
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and corresponding expressions interchanginge and i can be
used to describe the dynamic screening of the interactio

For a TCP with a Coulomb interaction the expressio
~17! are simplified. In that case, the Lenard-Balescu collis
integral follows in the zero-frequency limit. The RPA resu
can be improved determiningxcc8(q,v) in Eq. ~16! in a
self-consistent way, using the result derived below wh
takes the effect of collisions into account, see Sec. IV. T
Born result is recovered replacingxcc8(q,v) in Eq. ~16! by
xcc8

0 (q,v).
The divergence ofnBorn(0) for long-range interactions i

already avoided if instead dynamic screening a static
screened potential is used, replacingVcc8(q) by Vcc8(q)/(1
1k2/q2) with the screening parameterk25ne2/(e0kBT).
Introducing dimensionless quantities, we have~see Ref.@2#!

nL,Born~v!52 ignE
0

`

dy
y4

~y21n̄!2~11L̄ei
2 y2!2

3E
2`

`

dx
exp@2~x2y!2#~12exp@24xy# !

xy~xy2w2 ih!
,

~18!

g5
1

24&p5/2

e4b3/2

me
1/2e0

2 , w5
\v

4kBT
, n̄5

\2k2

8mekBT
,

s
n

h
e

ly

where in comparison with Eq.~48! in paper I the normalized
potential parameterL̄ei5A8me /\2bLei appears. In the
zero-frequency limitv50 a Ziman-Faber-like expression
obtained, Eq.~18!,

nL,ZF5nL,Born~0!54pgnE
0

`

dy
y3e2y2

~11L̄ei
2 y2!2~y21n̄!2

.

~19!

Results for the dynamic collision frequency in differe
approximations are shown in Fig. 1, lower part, for the p
rameter valueG52.0. The data are normalized with th
plasma frequencyvpl,e5(ne2/e0me)

1/2. While the static ex-
pressionnL,ZF is a real constant, the dynamic expressi
nL,Born(v) and nL,RPA(v) are complex, frequency
dependent functions. The dynamic screening of the collisi
in nL,RPA(v) leads to strong deviations from the stat
screeningnL,Born(v) near the plasma frequency.

C. Strong collisions

Up to now the dynamic collision frequency was given
the Born approximation with respect to a static long-ran
interactionVcc8(q) or the dynamically screened interactio
However, the Born approximation is limited to weak scatt
ing. To treat strong collisions, a ladder-T matrix approxima-
tion has to be considered, see paper I, describing binary
0-4
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lisions. For a two-component plasma within an adiaba
approximation, the contribution to the collision frequen
due to a partial summation of ladder diagrams reads

nT~v!5
i\

V0nmei
(

nn8P

3
eb~EnP2En8P!21

EnP2En8P

g~EnP!@11g~En8P!#

\~v1 ih!1EnP2En8P

3U (
pe ,pi ,q

cn8P
* ~pe ,pi !V~q!qzcnP~pe1q,pi2q!U2

.

~20!

Here,g(E) is the two-particle distribution function andcnP
are solutions of the Schro¨dinger equation for an appropriat
potentialV(q) to be specified below. Equation~20! shows
that the collision frequency is given in terms of dipole mat
elements.

A classical limit of this expression can be obtained us
the WKB approximation for the wave functions. As show
in @12#, the WKB approximation for the Coulomb wav
function reproduces the classical trajectory in a Coulo
potential.

In the dynamically screened binary collision approxim
tion for the collision frequencyn(v), the ladder-T matrix
should be calculated for the dynamically screened interac
instead of the static one, what can be done in a certain
proximation summing up the different expressions~16! and
~20!, see paper I. To avoid interferences with dynam
screening and double counting, Gould and DeWitt@14# pro-
posed to add the difference of theT-matrix result and the
Born result to the dynamically screened Born approximati
Within this approach, the wave functions are determined

FIG. 1. The influence of the dynamic collision frequencyn(v)
~lower part! on the dynamic structure factorSqq(k,v)/e2, for the
CTCMP ~upper part! @Eqs.~9! and ~25!#. Different approximations
for n(v) are considered: the static Ziman-Faber@Eq. ~19!# ~dashed
line!, the statically screened@Eq. ~18!# ~dot-dashed line!, and the
dynamically screened@Eq. ~16!# result ~full line!. The parameter
values areG52, k/k50.51.
05641
c

g

b

-

n
p-

.
s-

ing a statically screened Coulomb potential in the case o
TCP. For the TCMP, the modified potential given by Eq.~1!
is weak compared to the Coulomb potential. Thus, it is
pected that the difference between theT-matrix approxima-
tion and the Born approximation is small.

In the high-frequency limit, the Born approximation co
verges to theT-matrix approximation. Hence, we estima
the difference by comparing with the static value of the c
lision frequency given by

nT~0!5
8

3A2p

nib
5/2

me
1/2 E

0

`

dEE2e2bEQ~E!. ~21!

Here, Q(E) denotes the transport cross section for a giv
collision energyE. Within a partial wave expansion it is
determined from the phase shifts via

Q~E!5
4p\2

meE
(
l 50

`

~ l 11!sin2@d l~k!2d l 11~k!#. ~22!

We have compared the collision frequency using phase s
in the Born and in the WKB approximation, see@13#, with
respect to a static screened model potential for the collis
between ions and electronsVei

D,L(q)5q2(q21k2)21Vei
L (q).

Here,k21 denotes the Debye screening length. For the c
ditions given in Sec. VI the differences are small amount
to 25% at largest. Thus, within the errors of the simulati
data, the use of the dynamically screened Born approxi
tion is sufficient.

D. Renormalization factor

Evaluating the dynamic collision frequencyn(v), the dy-
namically screened binary collision approximation which
based on the evaluation of the force-force correlation fu
tion ~12! will not give the correct result in the low-densit
limit when the plasma is nondegenerate. To obtain the c
rect limit, all moments of the ion and electron distributio
functions have to be taken into account to describe the n
equilibrium state.

Up to now we have considered only the particle curre
densities as relevant observables. Higher moments of
electron and ion distribution function also will contribute
the evaluation of the dynamic structure factor. They can
incorporated by a renormalization factorr (v), which was
introduced in@15#. Expressions forr (v), which is a complex
function, can be found in paper I. According to Fig. 11
paper I, the effect of the renormalization factor, modifyin
the collision frequency calculated in the dynamica
screened binary collision approximation, is up to 20% n
kBT and the factor approaches 1 in the limit of large freque
cies, leaving the asymptotic behavior limv→` Ren(v)
}v27/2 unchanged.

IV. RESPONSE FUNCTION AT FINITE WAVE NUMBERS
AND THE MERMIN ANSATZ

The evaluation of the response function or the cor
sponding dynamic collision frequency was given in Sec.
0-5
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A. SELCHOWet al. PHYSICAL REVIEW E 64 056410
only in the long-wavelength limit. Microscopic expressio
can also be given for finite wave numberskW , see paper I; its
evaluation, however, is very tedious. We will apply a sem
phenomenological approach to evaluate the response f
tion at finite wave numbers.

According to Mermin@16#, collisions can be taken into
account in the polarization function in a phenomenologi
way as follows:~i! Start with the RPA expression~8! for the
collisionless plasma.~ii ! Replace the frequencyv by the
complex variablev1 i /t where the real numbert has the
meaning of a relaxation time which can be introduced in
phenomenological way.~iii ! To fulfill conservation laws, in
particular the conservation of particle numbers, an exp
sion for the polarization function can be considered,

xc
M,0~k,v!5~12 ivt!S xc

0~k,v1 i /t!xc
0~k,0!

xc
0~k,v1 i /t!2 ivtxc

0~k,0!
D .

~23!

A derivation of this result using the method of the no
equilibrium statistical operator@17# was given recently@18#.
This way, a closer connection to the microscopic descript
can be given, and further conserved or slowly varying qu
tities can be taken into account, see also@19#.

The inclusion of particle number conservation within t
method of the nonequilibrium statistical operator allows a
for a frequency-dependent relaxation time. This way, a re
similar to Eq.~23! can be derived, where the inverse rela
ation time 1/t is replaced by the complex collision frequen
n(v). Thus, in the long-wavelength limit the correct, micr
scopically calculated polarization function~paper I! will be
reproduced. Therefore we expect that also for finite value
k a reasonable approximation is achieved.

The resulting Mermin polarization function, as derived
@18#, is

xc
n,0~k,v!5S 12

iv

n~v! D S xc
0~k,z!xc

0~k,0!

xc
0~k,z!2

iv

n~v!
xc

0~k,0!D ,

~24!

z5v1 in~v!5v2Im n~v!1 i Ren~v!.

To get the RPA-Mermin susceptibility for a two-compone
system interacting via the potentialVcc(q), we have to re-
place the polarization functionxc

0(k,v) in Eq. ~9! by Eq.
~24!. As a result we obtain

xqq
n,RPA~kW ,v!

5
xe

n,01x i
n,02xe

n,0x i
n,0V0~Vii 1Vee12Vei!

12xe
n,0V0Vee2x i

n,0V0Vii 1xe
n,0x i

n,0V0
2~VeeVii 2Vei

2 !
.

~25!

~For shortness,v andk have been dropped on the right-ha
side.! It should be mentioned that fork→0 the correct mi-
croscopic expression forxqq(0,v), based on the given ap
proximation for n(v), is reproduced. Results for the re
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sponse functionxqq
n,RPA(k,v) and the corresponding dynam

structure factor are given in Sec. VI.

V. THE CTCMP AND ITS NUMERICAL TREATMENT

Taking the limit \→0 of the TCMP and all the previ-
ously derived expressions, we arrive at a well defined
tirely classical description, the classical two-compone
model plasma~CTCMP!, which is determined by the class
cal counterpart of the Hamiltonian~2!

H5(
a

pa
2

2ma
1

1

2 (
a,bÞa

eaeb

4pe0urWa2rWbu

3~12exp@2urWa2rWbu/Lab#!. ~26!

Introducing now the scalingH̃5H/kBT, p̃5p/(mekBT)1/2,
and r̃ 5r /a with a5(4pn/3)21/3, and the dimensionless pa
rametersL̃ab5Lab /a, the Hamilton function~26! reads

H̄5(
a

me

ma

p̃a
2

2
1

G

2
(

a,bÞa

eaeb

e2urW̃a2rW̃bu

3~12exp@2urW̃a2rW̃buL̃ab#!. ~27!

For fixed massesmi5mp and me , and chargesei52ee

5e, the system depends on the parametersL̃ab , but onn,T

only through the classical plasma parameterG. For L̃ab
&1, weakly coupled systems are characterized byG!1 and
nonideal ones byG*1. As the CTCMP can be completel
treated by classical mechanics, molecular dynamics~MD!
simulations, see, e.g.,@20#, provide a suitable tool to study
the full many-body dynamics of these systems, in particu
at G*1. During the last decades MD simulations have be
successfully applied to various strongly coupled plasma
systems as the classical one-component plasma~OCP! or ~bi-
nary! ionic mixtures, see, e.g.,@21–23#. The procedure is
conceptually very simple: theNi ions ~protons! andNe elec-
trons $rWa , pW a , a51,...,N, N5Ni1Ne% just follow the clas-
sical equations of motion with the mutual interactions~1!

drW̃

d t̃
5

me

ma

pW̃ a ,

dpW̃ a

d t̃
52

]

]rW̃a
FG (

bÞa

eaeb

e2urW̃a2rW̃bu

3~12exp@2urW̃a2rW̃bu/L̃ab#!G , ~28!

which are integrated numerically. The dynamics of t
CTCMP, as given by the scaled dimensionless equati
~28!, with t̃ 5t(kBT/mea

2)1/2, depends only on the param
etersG and L̃ab .

The MD simulations contain, without restrictions on th
strength of the interaction, all correlation effects, dynam
0-6
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screening, close collisions, and multiparticle correlatio
They do not rely on a spatial grid and there is no restrict
in the spatial resolution. On the other hand, the expe
grows quadratically with the particle numberN because the
long-ranged Coulomb part of the force is to be evalua
separately for each pair of particles. The available compu
power thus limits the computation to at most a few thousa
particles. In order to approximate an infinite system by
finite particle number, the particles are packed into an
ementary cubic simulation box of lengthL and this box is
continued periodically in all three spatial directions. Thus
particle is replaced by a cubic lattice of particles and
Coulomb part of the interaction by an Ewald sum of Co
lomb interactions@24,25#. The limited simulation box intro-
duces, however, a largest length scale on which collec
phenomena can be explored and a discrete set of allo
wave vectorskW52pnW /L with the smallest possible wav
numberk52p/L. In units of the inverse screening lengthk,
i.e., the inverse of the Debye lengthk51/lD
5(ne2/e0kBT)1/2, k/k52plD /L scales like k/k
}N21/3G21/2. Thus smallk/k are only accessible for largeG
~andN!. This limitation becomes a serious problem with d
creasingG. But then one leaves the nonideal regime anyw
and can continue with simpler methods. It is a general f
ture, that MD simulations are particularly suited for the ca
of strong coupling and become inefficient, if not impossib
just where weak coupling approaches are valid.

Equations~28! are solved using a standard velocity-Ver
algorithm @20#. But for particles which come very close t
each other, in particular for the attractive ion-electron int
action, the arising large forces require a strong reduction
the time step which slows down the numerical propagati
This is avoided by introducing a separate treatment of cl
collisions, which takes advantage of the fact that the ti
scales in the close collision region are much shorter t
those for the system as a whole. The close colliding partic
are thus propagated as subsystems with a much reduced
step @26,27#. The accuracy and stability of the simulatio
runs are monitored using the total energyH. The outlined
scheme ensures the conservation ofH with an accuracy typi-
cally better than 1025 at a global time step Dt
50.0086vpl,e

21 , where vpl,e5(ne2/mee0)1/25(3G)1/2(kBT/
mea

2)1/2 is the electronic plasma frequency.
In MD simulations, observables are measured as time

erages over a certain time interval and/or as ensemble a
ages over different initial configurations. To determine t
dynamic structure factor from the classical trajector

$rWa(t)% we first sample for different possible vectorskW the
Fourier transformrkW(t)5Saea exp@2ikW•rWa(t)# of the charge
density r(rW,t)5Saead3@rW2rWa(t)# as a function of time.
Then the density-density autocorrelation functionF(kW ,t) is
calculated from a time average over the simulation timt
and an ensemble average denoted by^ & over different runs
with varying initial microscopic configurations as

F~kW ,t !5
1

N

1

t E0

t

dt8^rkW~ t81t !r2kW~ t8!&, ~29!
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whereN5Ni1Ne . TransformingF(kW ,t) into the frequency
domain, we finally obtain the dynamic structure factor

S~kW ,v!5
1

2n E d3r E
2`

`

dt^r~rW81rW,t81t !

3r~rW8,t8!&e2 i ~kW•rW2vt !

5E
2`

`

dtF~kW ,t !eivt, ~30!

wheren5ni5ne . Of course, this Fourier transform has to b
performed numerically, which restricts the time integral
Eq. ~30! to the simulation timet and introduces the usua
artifacts and problems related to numerical integral trans
mations@28#. We will resume this when comparing the MD
results with the analytical treatment.

The actual simulations run withNi5Ne5250 particles of
each species with the proton-electron mass ratiomi /me

51836 over a typical time oft5360vpl
21. The dynamic

structure factor is evaluated at constant total energy in
equilibrium state of the system, which is prepared by a p
ceding sufficiently long simulation at constant temperatu
The shown results typically represent an ensemble ave
over 10,...,20 individual simulations. The error is deduc
from the fluctuations in the ensemble of events. In all p
sented simulations the same parametersL̃ab5Lab /a have
been used. Guided by the quantum statistical derivation@5,6#
of the effective potential~1! whereLab}(mab)21/2, we de-
fined them throughL̃ab5(mie /mab)1/2L̃ ie with a fixed
L̃ ie50.4 and the reduced massesmab5mamb /(mb1mb),
i.e., L̃ i i 50.013 andL̃ee50.57.

VI. ANALYTICAL EXPRESSIONS
VERSUS MD SIMULATION RESULTS

In the classical limit as investigated in the MD simul
tions the fluctuation-dissipation law~5! modifies to

Sqq~k,v!52
1

nbv
Im xqq~k,v!. ~31!

For the classical version of the response functionxqq(k,v)
we apply two different models, the common RPA~8! with
z5v and the RPA-Mermin susceptibility~25! with z5v
1 in(v) as frequency argument inxc

0(k,z) ~7!, which is
taken in the limit\→0 given by the expression

xc
0~k,z!52ncb@11 iApxcw~xc!#, ~32!

with

xc5Amcb

2

z

k
~33!

and
0-7
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FIG. 2. Dynamic structure factorSqq(k,v)/e2 for an electron-proton model plasma in the RPA@Eq. ~8!# and in the Mermin-like
approximation@Eq. ~25!# with dynamically screened dynamic collision frequencynL,RPA(v), Eq. ~16!, for different parameter values o
G,k/k. ~a! G50.5, k/k50.51. ~b! G51, k/k50.51. ~c! G52, k/k50.25. ~d! G51, k/k50.36.
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w~x!5exp~2x2!F11
2i

Ap
E

0

x

dt exp~ t2!G . ~34!

The influence on the dynamic collision frequency on the
namic structure factorS(k,v) is depicted in Fig. 1, uppe
part. We start from the collisionless RPA expression. Un
the influence of the staticnL,ZF ~19! the peak in the structure
factorSn,RPA(k,v) is broadened and slightly shifted toward
lower frequencies. This effect is partially canceled by int
ducing the frequency-dependent static screening, leadin
the dynamicnL,Born(v) ~18!. The structure factor starts a
the same static limit as the previous one but due to the v
ishing values fornL,Born(v) abovevpl,e it merges with the
RPA structure factor at higher frequencies. Hence, the p
has also a frequency shift but it appears smaller than in
case of a staticnL,ZF. Improving the screening by dynami
contributions the peak becomes broader again and slig
asymmetric because the collision frequencynL,RPA(v) ~16!
surpasses the static valuenL,ZF aroundvpl,e and decrease
with the same asymptotic behavior asnL,Born(v). Thus, the
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high frequency tail of Sn,RPA(k,v) with dynamically
screened collision frequency lays above the other results

In Fig. 2 the dynamic RPA-Mermin structure facto
Sqq

n,RPA(k,v) ~31!, ~25! with the dynamically screened colli
sion frequencynL,RPA(v) ~16! is compared with the com
mon RPA structure factor~8! and the results of the MD
simulations~29!,~30! at differentG andk/k values. The error
bars to the MD data represent the fluctuations in the
semble of individual simulation runs. With increasingG and
decreasingk significant differences between the MD resu
and the collisionless RPA structure factor develop, indicat
a much stronger damping of the plasmon mode at increa
nonideality of the TCMP. In contrast to the collisionle
RPA the theoretical values for the dynamic RPA-Merm
structure factor follow this trend very well and are in ve
good agreement with the simulation data concerning posi
and width of the peak. Differences between the simulat
data andSqq

n,RPA(k,v) appear on the high frequency side f
k/k50.51, where it seems that the influence of collisions
slightly overestimated at higher frequencies. In the case
smallerk values no such differences arise.
0-8
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FIG. 3. Log-log plot of the dynamic structure factorSqq(k,v)/e2 and comparison with an asymptote;1/v7.5 @Eq. ~15!# for different
parameter values.~a! G52, k/k50.25. ~b! G51, k/k50.36.
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In Fig. 3 the asymptotic behavior ofSqq(k,v) is investi-
gated. WhileSqq

RPA(k,v) vanishes exponentially the dynam
RPA-Mermin structure factorSqq

n,RPA(k,v) drops down with
the asymptote 1/v7.5 ~15!. This is again in good agreemen
with the simulation data. Due to the unavoidable fluctuatio
of the MD simulation data and the usual restrictions of n
merical Fourier transforms, the accessible frequency dom
for the dynamic structure factor as obtained from the sim
lations is, however, restricted to frequencies below;5 to
10 vpl,e .

But at even stronger coupling the present theoretical
proach becomes questionable. ForG.2 it starts to underes
timate the influence of collisions as a damping mechani
probably because only electron-ion collisions are includ
and pair correlation effects are neglected. Thus, for higheG
values the theory predicts a more pronounced peak comp
to the simulation, as shown for instance in Fig. 4.

FIG. 4. Plot of the dynamic structure factorSqq(k,v)/e2 at
strong coupling (G54,k/k50.51). The Mermin-like approxima
tion @Eq. ~25!# overestimates the plasmon peak but is able to rep
duce the high frequency tail of the simulation.
05641
s
-
in
-

p-

,
d

ed

As an important test, we checked for the RPA-Merm
susceptibility~25! exact properties as, e.g., the sum rule

e2

e0
E

0

`

dvv2Sqq~k,v!52
p

2

k2

k2 vpl
2 . ~35!

Table I shows the actual values as obtained for differ
parameters and demonstrates that the RPA-Mermin sus
tibility obviously fulfills the f-sum rule within the numerica
errors.

VII. CONCLUSIONS

Previous work concerning the response function in
long-wavelength limit and the dynamic collision frequen
~paper! has been extended to finite wave numbers. For
the Mermin approach has been utilized which is based on
continuation of RPA expressions to complex frequencies
suring conservation laws. In the present paper, microsco
approaches to the dynamic collision frequency were e
ployed in order to incorporate the quantum statistical
proach to the dynamic structure factor in the lon
wavelength limit. The Mermin-like approach using
complex collision frequency appears to be a robust and
sible procedure, which guarantees exact properties suc

-

TABLE I. Check of the frequency sum rule@Eq. ~35!# for
Sqq

n,RPA(k,v) @Eq. ~25!# with the dynamic collision frequency@Eq.
~16!#, corresponding to the parameter values considered in F
2–4. The analytical integral value is normalized to 1.

G k/k Sum

0.5 0.505 1.001
1.0 0.505 1.001
1.0 0.357 1.001
2.0 0.252 1.003
4.0 0.357 1.001
0-9
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sum rules and reproduces the correct behavior in limit
cases.

The analytical approach has been compared w
molecular-dynamics simulations. Because the MD simu
tions were done on the level of classical dynamics, a tw
component model plasma was considered replacing the C
lomb potential by a model potential which allows for
classical limit. For this classical model plasma, MD simu
tions are an appropriate and powerful numerical tool fo
treatment of the full many-body dynamics without restr
tions on the strength of the interaction. They contain d
namic screening, close collisions, and multiparticle corre
tions and are particularly suited for investigating t
dynamic properties of strongly coupled systems withG*1.

Comparing results for the dynamic structure factor
found that the analytical theory in the classical limit and t
MD simulations are in good agreement for moderate val
of the plasma parameterG&1. Deviations arise for highe
values ofG as shown, e.g., forG54. This is expected since
higher-order correlations in the calculation of the collisi
frequency have been neglected so far. It should be stre
that a reasonable agreement between analytical and s
lated results is achieved only using a complex dynamic c
lision frequency responsible for the shift and broadening
the plasmon peak.
r,
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Special properties of the dynamic structure factor such
sum rules and the high-frequency behavior have b
checked. In particular, it is found that a finite value for t
third-moment sum rule can be obtained only using a dyna
collision frequency, in contrast to the original Mermin a
proach based on a frequency-independent relaxation t
The predicted analytical behavior in the high-frequency lim
is also seen from the simulation if the numerical accuracy
sufficiently high.

The results presented here are also of importance for
treatment of quantum systems. While an exact treatmen
quantum dynamics is out of reach in current numerical sim
lation techniques, the analytical approach given in this pa
allows for a rigorous quantum treatment. On the other ha
the region of applicability of analytical results to strong
coupled plasmas can be found on the basis of compar
with MD simulations as performed in the present work.
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