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Dynamic structure factor for a two-component model plasma
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Analytical results for the structure factor of a two-component model plasma that describe an electron-ion
plasma with modified interaction are derived from a Green function approach in different approximations. The
random-phase approximation is improved by including the dynamic collision frequency, and results for the
long-wavelength limit are extended to arbitrary wave numbers using the Mermin ansatz. After taking the
classical limit of the resulting expressions, they are compared with molecular dynamics simulation results for
the classical two-component model plasma.
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I. INTRODUCTION erties for states of identical particles, afig due to the un-
certainty principle. As long as the density is lower than the
The two-component plasm@CP) is an interesting sys- degeneration density, effects of the symmésych as Pauli
tem because it can model properties of different real plasma$locking can be neglected, and the Fermi distribution func-
in particular hydrogen or the electron-hole plasma. It consistdion can be replaced by the Maxwell distribution. The uncer-
of two specie< [e.g., electrong and protongions) i] with  tainty principle is of relevance in particular for interacting
massesn, and charge®., and the interaction is given by particles at short distances. Within a quasiclassical approxi-
the Coulomb potentiaV/$,(r)=e.eq/(4meor). In equilib-  mation, the Coulomb interaction can be replaced by an ef-
rium it is described by the temperatufeand the densities fective interaction which corresponds to a spatial average
n.. For simplicity we assume singly charged ions, over distances characterized by the thermal wavelengths.
= —e,=e, and charge neutrality);=n,=n. The properties Such quasiclassical effective interactions were derived by
of such a system can be evaluated using the methods &felbg [5] and by Deutsci6] from quantum statistical ex-
quantum statistic§1]. Linear response properties have re-pressiongSlater sums, sef]).
cently been considered by Reinhalzal.[2], denoted below ~In this paper we will consider the general form of the
as paper |. These many-particle approaches are based orrgeraction
perturbative treatment of the Coulomb interaction. After per-
forming partial summations, results are found which are ex- VA(r)= €c€d (1—e ) 1)
. el . . d - y
act in the limiting case of weak couplinf),<1, and which daregr
can be used to find interpolations applicable in a large region
of the parametersT,n. Here, the coupling parametdf  WhereA 4 are free parameters that define the model plasma.
= e?/(4meokgT)(4mn/3)M3 describes the ratio of potential By taking Acq=(27%%/meksT)Y2,  with mgf=m;*
energy and kinetic energy. +my 1 we retrieve the quasiclassical effective interaction of
On the other hand, the properties of strongly correlated5,6] as discussed above. This modified potential avoids the
classical many-body systems can be successfully modeled I§oulomb collapse in a classical treatment of the system. But
fully numerical treatments. As they are not restricted to pait is still an unsolved problem whether and under which con-
rameter regions where approximations within perturbatiorditions a quasiclassical MD simulation based on interaction
theory are applicable, they can be used to verify analytica{l) can reproduce the dynamic properties of a TCP that has
results, e.g., at strong couplidg=1. For instance, the dy- to be treated by quantum statistics. We will not discuss this
namic structure factor of a TCP-like system was evaluate@pen question either. Instead, we consider in the following a
by Pschiwul and Zwicknagé¢B,4] using molecular dynamics system where the\.q are given fixed parameters. This
(MD) computer simulations, where the classical equations ofmodel system of charged particles interacting via the poten-
motion are solved numerically for an appropriate number otial (1) will be denoted as a two-component model plasma
point particles. But in general, quantum effects have to bédTCMP). In particular we are interested in the well defined
taken into account which arige due to the symmetry prop- classical limit of this system, formally obtained if the limit
h—0 is considered. This classical two-component model
plasma(CTCMP) can be rigorously treated by classical me-
*Email address: selchow@darss.mpg.uni-rostock.de chanics and MD simulations. The available computational
TFAX: +49 (0)381-498 2857. power allows, however, only rather small sampling times
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and system sizes. In certain limiting cases such as high fresity response functionygq(K, ©) =3 co€:8¢' xoo (K, ). The

quencies or low densities, simulations should be checkeggjation to the charge-density dynamic structure factor is
against analytical results which then may represent better

approximations. In the present work, MD simulations of the . 3
dynamic structure factor for a CTCMP will be compared Suq(k @)=~
with analytical results, and the validity of different ap-
proaches will be discussed.

Therefore, in Secs. II-IV we first derive analytical ex-
pressions for the TCMP by extending the quantum statistic
treatment of a system interacting via the Coulomb potentia]
(TCP), as given in(l), to systems with the effective interac-
tion (1). In their classical limit these expressions then de-—
scribe the CTCMP and allow an adequate comparison with
MD simulations. This will be done in Sec. VI, after a discus-
sion of the CTCMP and the MD simulation technique in Sec.
V. The final conclusions are drawn in Sec. VII.

1 .
m Im qu(k,w). (5)

In the long-wavelength limit K—0), a collision fre-
uencyv(w) can be introduced in connection with a gener-
lized Drude formula for the dynamic conductivity, for de-
ails see paper |. With the plasma frequenczyé
S .e2n./(egm,) we have

w
W)= —iek? 2 ————i 2 tjw. (6)
w w

The use of perturbation theory to calculate the partial re-
Il. DYNAMIC RESPONSE OF A TWO-COMPONENT sponse _function$4) and the related quantities will be dis-
MODEL PLASMA cussed in Sec. lll. We give here only the lowest orders of
perturbation theory, where we find the well-known result for
We consider a nonrelativistic charged particle systenthe polarization functio7]
with componentg (massm;, chargee., spins,) described
by the Hamiltonian

C Cc
1 D fosk2= Foke 0

0 - .
’ k, :5 - " = k, 5 ’y
ch ( w) cc QO 5 AE(’;Yk_ﬁ(w_}_l 77) XC( (U) cc
— T 7
H _pE,c Epap c@p,c @)
1 . Wher(; A?E,lk:dErcnk/z_ E]g—klzzﬁz_ﬁaﬁ/mg 'f;=]£exprE§
+2 > Vee(@al ..l ayca,.. (2 BTl enotes the Fermi distribution functiong
2 oqee o PTa.CTp +a.eTTRLETRE =1/(kgT) is the inverse temperature, apg is the chemical
potential of species. The limit »—0 has to be taken after
Eg=h2p2/(2mc) is the kinetic energyV . (q) is an(arbi-  the thermodynamic limit. Analytical expressions for various
trary) interaction potential, anel;c denotes the creation op- limiting cases can be found if8]. In particular, we have
erator of a particle of componentwith momentum#p. In- limy_o x2(k,w)=nk?(mw?)  and  lim_ox2(k,0)
particular, we will restrict ourselves to a two-componént- =—Bn.. The standard random-phase approximati@RA)

drogenlikg plasma consisting of electrons and idpgotons  is introduced performing summation over ring diagrei®is
so thatc=e,i. The spin variable is included in the index  equivalent to the introduction of a screened interac-
and spin summations are performed in the final expressionggn /¢ (K )=V (K)+3 V. (K) v2(K. ©) Q. VS, (K
In the case of the TCMP, the interaction is obtained fromg . - oo (K1) =Veo (k) + 2 aVed(k) xg(ki0) oVgo (k)
) Solving
Eqg. (1) as the Fourier transform

) ce Xeo' (k@)= xX2(K,0) eer + X2(K, ) QoVeg, (K, @) X (K, )
Ve (@) =V o (d)= 2 ) ©)
c €0Qo(*+ AL, we find the RPA expression, d#]
where(), is the normalization volume. The Coulomb inter- XESA(E,Q,)
action(TCP) is included as a special case wh&p, =0. o o o
Important quantities are the partial equilibrium correlation _ Xe— XeQoViiXi
functions of the Fourier transform of local density fluctua- 1 x%00Vee xPQ0Vii +XUOE (Vo — VE)
tions sng= leipén;k with the fluctuations of occupation ®)
”Umberwng,k:ag—k/aeam k/2,c_<ag—k/2,cap+k/2,c>eqv XEiPA( ko)

_ XgQOVeiXiO
1— X3Q0Vee X7 QoVii+ xoxPQ5(VeeVii — V3)

e

. I ,
Xee (K@) = Qo fo dte @Y SnE(L), onE eq- (D)

Further equivalent definitions in terms of correlation func-and the corresponding expressions interchamgadi. The

tions can be found, e.g., in Refl]. _ dependence ok, has been dropped. The complete RPA
Related quantities are the density-density response funexpression for the TCMP with model interactiéh) follows
tion xnn(K,w)=2.cxcer(K,w) and the charge-charge den- as
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RPA [ can be expressed in terms of correlation functions allowing
Xqq (K o) ) . e .
for a systematic evaluation within perturbation theory, see
X204 xP = XX Qo(Vii + Veet 2Ve)) paper | and further references given there. In the first order
= 1—X290Vee— X?QoVn +X2XiOQ§(VeeVii _Vgi) : wi}h respect to the i.nt(.araction, the RPA expre_ssions are ob-
tained. Collisions within the system are described consider-
) ing the second and higher orders of perturbation theory.
In the special casd =0 (i.e., the case of the TCP with ~ The evaluation of the second order Mi(k,w) for arbi-
Coulomb interactiop the expressions simplify considerably trary Kk, is rather complex. As a special case, we consider
since the interactions between the different species have ttibe long-wavelength limik— 0, as done in paper |, where
sameg behavior, depending on the species via the chagges simple analytical expressions can be given. v\m@(o,w)

only. given above and lim. o V.. (k) <k~ 2 for the long-range po-
tentials considered here, we have according to paper | for the
ll. PERTURBATION EXPANSION dynamic collision frequency6)
FOR THE INVERSE RESPONSE FUNCTION
AND DYNAMIC COLLISION FREQUENCY
: . - . o BQO €cecr
The inverse response functidfi(k, »), defined by V(w)=— 2, —Fco(w), (1)
60(1)p| cc’ mcmcr
R _ k? 1
Xaq(K, @) =1B8Qo— —, (10 _ _ _ _
o M(k,w) with the dynamic force-force correlation function
— 1 ’ !
Feor(0)=qz 2 Ved@Vea (90,
0 pp’qq’pyp;dd’
x(al al a a al a ay a Yoti (12
p—0q/2c%p,+a/2,d%p; ~2d%p+a/2c Fp’ +q'/2c’ pi_q’/Z’d’ py+a’/2d'4p’—q'i2c’ /wtin:

where @,=G-k/k). Using perturbation theory, results for above with the opposite sign, and we ha#&(w)
the force-force correlation function will be given below in =Fﬁ°”‘(w)= —ngo”‘(w). According to Eg. (11), the
different approximations. For a TCP with Coulomb interac-dynamic collision frequency in the Born approximation fol-
tion, the static limitw— 0 yielding the dc conductivity was lows as

considered in different works, s¢&0], in particular[11] for 480,

the electron-ion plasma. The extension to finite frequencies VPM(w) = TFES”‘((D), (14
for the Coulomb interaction considered in paper | will be :

generalized here for arbitrary long-range interactiongeplacing in Eq(13) ¢ by e andd by i. The factor 4 is due to
Ve (Q). the summation over spin variables,=s;=1/2. For the

TCMP with interaction(1) the high-frequency behavior can

o be evaluated as
A. Born approximation

; A,B
The evaluation of the force-force correlation functid®) I'Lnx Rev™ ™M)
in the Born approximation, see paper | for details, gives for
c'=c e—Bfiw/Z_ eBﬁw/Z q2 )
ST [walviia | ¢
d c hw 3
FBorn( ) if eB(AEp,‘q_AEp'q)_l 2V2( ) 2 2,2 2.2
cc (W)= 2 d c azVeald ﬁﬁﬁ ﬁp ﬁq
BQO ’ AE, —AE — _
:pqu dpq P.d X0\ he Mg exp - h 2me+8me
Cc C
fp’+q/2(1_fp’fqlz)fz*q/2(1_fp+q/2) g Bhol2_ gphol2 qs
H Cc
f(w+in)+AE, ,—AEp, * ho (q%+AZq%)?
X[1— 8eql. (13 ’m, %02
¢ xexp{—ﬂ(w >+ a ) xw 12,
. . 2q 8me =\/m7;
Exchange terms are neglected. Only a contribution dor a e
#c remains. Forc’ =d+#c we find the same expression as (15)
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where a saddle-point approximation has been applied. It difdivergent static collision frequency®°™(0). According to
fers from the TCP case with Coulomb interaction whererig. 2 of paper I, we have to sum up ring diagrams in evalu-
Rep'PBM ) x w32 was derived(paper ), which is re-  ating the Green function describing the force-force correla-
lated to the different behavior of the interaction potentials ation function. Using the spectral representation for the
large values ofj. density-density correlation function we findng(w)
The Born approximation for the dynamic collision fre- =[exp(Bfiw)—1]71)
qguency has to be improved) considering dynamic screen- ,
ing, which is of importance at small values g@fand gives a N q do' ([ do”
reduction of the dynamic collision frequency especially at ” Aw)=i Qonmeizq: ?Vei(q)vm(q) ™
low frequencies(ii) considering strong collisions being im-

T

portant at large values @f (iii) considering renormalization, Ng(w’)—ng(— ")
which is of importance particularly below the plasma X (w0Finto +o")(—w —ao")
frequency.

X[IM xedd, 0" +in)Im xii(—q,0"+in)

B. Dynamic screening — 1M Yei(Qy @' +i7)IM xie( — 0, 0" +i7)],

The interaction in the TCP as well as in the TCMP is long

ranged so that the Fourier transform behaves as (16)
limg_o V(q)<q 2. Screening is then essential to avoid the
singularity of the collision integral aj— 0, which leads to a where the RPA expressida),
|
AR )= xe[1—2V;i Rex?+ Vi | x?{|°1+Im xPVZ | xel®
e |1_X2Vee_)(?vii+X2Xi0(veevii _Vgi)|2 ,
17)

Im Xg[vei ReXio_veivii |X|O|2] +1m X?[Vei ReXg_VeiVee|Xg|2]
|1_X2Vee_)(?vii+X2X?(Veevii_vgi)|2 ’

Im XeRiPA( IZ, w)=

and corresponding expressions interchangirmndi can be  where in comparison with Eq448) in paper | the normalized

used to describe the dynamiC Screening of the interaction. potentia' parameterxei: 1/8me/ﬁ2BAei appears_ In the

For a TCP with a Coulomb interaction the expressionszero-frequency limitw=0 a Ziman-Faber-like expression is
(17) are simplified. In that case, the Lenard-Balescu collisiongptained, Eq(18),

integral follows in the zero-frequency limit. The RPA result

can be improved determining..(q,) in Eqg. (16) in a o yaeﬂ/2
self-consistent way, using the result derived below which »*:%F= vA'BO"‘(O)=47rgnf dy—— .
takes the effect of collisions into account, see Sec. IV. The 0 T (1+AZy?2(y?+m)?
Born result is recovered replacing. (q,) in Eq. (16) by (19

0
(Q,w). . .. . .
XCCT(hqe d?vergence 0fB9(0) for long-range interactions is __Results for the dynamic collision frequency in different
already avoided if instead dynamic screening a Statica”)?pprc;mmatllon? érze (;sh(_)rvr\:n '3 'tz'g' 1, lower plfart,(jfor.zpetr[])a-
screened potential is used, replaciMig. (q) by V.. (q)/(1 rameter valuel =2.v. e2 ata abrze normaized wi €
+k2/q%) with the screening parameter’=ne?/(egksT). plasma frequency, .= (ne“/eome) == While the static ex-

ian N ZF ; i
Introducing dimensionless quantities, we hdsee Ref[2]) pgeg?f,LO”” IS a[i";," constant, the dynamic expression
vMBM(w) and vMRPAw) are complex, frequency-

dependent functions. The dynamic screening of the collisions
» v in v*RPAw) leads to strong deviations from the static
pNBOM( ) = —ignf dy — screeningr™ B°"(w) near the plasma frequency.
O T (Y MAL+AZY?)?

C. Strong collisions

' Up to now the dynamic collision frequency was given in

ff” expl — (x—y)?)(1—exd —4xy])
X dx
o the Born approximation with respect to a static long-range

Xy(xy—w—inz)

(18) interactionV../(q) or the dynamically screened interaction.
2,32 2 9 However, the Born approximation is limited to weak scatter-
1 e"p hw _ hk . L . ;
g= ——— 153, W=-—=, N=——>—, ing. To treat strong collisions, a ladd&matrix approxima-
24/2 %% Mg “eg 4kgT 8mekgT tion has to be considered, see paper |, describing binary col-
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=2, kjk=0.51 ing a statically screened Coulomb potential in the case of a
06 T TCP. For the TCMP, the modified potential given by ER.
’ ; — S, k) is weak compared to the Coulomb potential. Thus, it is ex-
S oa - = 8, ke o) pected that the difference between thenatrix approxima-
z, — s P ) (M) tion and the Born approximation is small.
S _ squ,RF'A(k‘(D) N In the high-frequency limit, the Born approximation con-
I 4 verges to theT-matrix approximation. Hence, we estimate
0 the difference by comparing with the static value of the col-
: - M lision frequency given by
0.15 - Re A,Born(w)
N e ik’ sl ©="0Im vA’Bom(u)) 8 n_ﬂ5/2 o
g p ARPA T _ ! 2 ~— BE
= — Rev"" (o) v'(0)= ———=—= | dEE‘e PFQ(E). (21
§,0.05_ ............... o Tm v () 3\/% Me 0
0
005k O ey =] Here, Q(E) denotes the transport cross section for a given
"0 0.5 1 1.5 2 2.5 collision energyE. Within a partial wave expansion it is
oo, determined from the phase shifts via
FIG. 1. The influence of the dynamic collision frequengyw) ah2 >
(lower par} on the dynamic structure fact@®,(k,»)/e?, for the Q(E)= —— > (1+1)sir?[ 8(k) = 8,4 1(K)]. (22
el =0

CTCMP (upper part[Egs.(9) and(25)]. Different approximations

for v(w) are considered: the static Ziman-Fapgg. (19)] (dashed o ) )
line), the statically screenefEq. (18)] (dot-dashed ling and the ~ We have compared the collision frequency using phase shifts

dynamically screene@Eq. (16)] result (full line). The parameter in the Born and in the WKB approximation, sgE3], with
values ard" =2, k/k=0.51. respect to a static screened model potential for the collision

between ions and electrong:*(q) = q2(q?+ «2) ~ VA (q).
lisions. For a two-component plasma within an adiabaticHere, <~ denotes the Debye screening length. For the con-
approximation, the contribution to the collision frequency ditions given in Sec. VI the differences are small amounting

due to a partial summation of ladder diagrams reads to 25% at largest. Thus, within the errors of the simulation

_ data, the use of the dynamically screened Born approxima-

N tion is sufficient.

i(w)= g om 2

oNMej y7p

B(Ep—Ep) D. Renormalization factor

ertmnem e — 1 g(Enp)[1+9(Enp)]

X Evaluating the dynamic collision frequeneyw), the dy-

—E, +in)+E,p—E ) ; > Xw) I
Enp=Bnp fiotin) +Erp=Eye namically screened binary collision approximation which is

. 2 based on the evaluation of the force-force correlation func-
X| 2 o(Pe POV(A)Asthnp(Pet+ TP~ )| - tion (12) will not give the correct result in the low-density
Pe:Pi 4 limit when the plasma is nondegenerate. To obtain the cor-
(200 rect limit, all moments of the ion and electron distribution
functions have to be taken into account to describe the non-
Here,g(E) is the two-particle distribution function anh,p  equilibrium state.
are solutions of the Schdinger equation for an appropriate Up to now we have considered only the particle current
potential V(q) to be specified below. Equatiof20) shows  densities as relevant observables. Higher moments of the
that the collision frequency is given in terms of dipole matrix ejectron and ion distribution function also will contribute to
elements. the evaluation of the dynamic structure factor. They can be
A classical limit of this expression can be obtained USingincorporated by a renormalization factofw), which was
the WKB approximation for the wave functions. As shown jntroduced ir{15]. Expressions for(w), which is a complex
in [12], the WKB approximation for the Coulomb wave fynction, can be found in paper I. According to Fig. 11 of
function reproduces the classical trajectory in a Coulomipaper |, the effect of the renormalization factor, modifying
potential. . _ o ~ the collision frequency calculated in the dynamically
~ In the dynamically screened binary collision approxima-screened binary collision approximation, is up to 20% near
tion for the collision frequency(w), the laddeff matrix T and the factor approaches 1 in the limit of large frequen-
should be calculated for the dynamically screened interactiogjes, |eaving the asymptotic behavior |jm.. Rey(w)
instead of the static one, what can be done in a certain apz,~7/2 ynchanged.
proximation summing up the different expressiqtaé) and
(20), see paper I. To avoid interferences with dynamic IV. RESPONSE FUNCTION AT FINITE WAVE NUMBERS
screening and double counting, Gould and De\Mit] pro- ' AND THE MERMIN ANSATZ
posed to add the difference of tilematrix result and the
Born result to the dynamically screened Born approximation. The evaluation of the response function or the corre-
Within this approach, the wave functions are determined ussponding dynamic collision frequency was given in Sec. llI
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only in the Iong-wavelength limit. MinOECOpiC expressions sponse fUI’]CtiOIXE’qRP%k,w) and the corresponding dynamic
can also be given for finite wave numbésssee paper |; its  structure factor are given in Sec. VI.

evaluation, however, is very tedious. We will apply a semi-

phenomenological approach to evaluate the response func-y. THE CTCMP AND ITS NUMERICAL TREATMENT

tion at finite wave numbers.

According to Mermin[16], collisions can be taken into ~ Taking the limit2—0 of the TCMP and all the previ-
account in the polarization function in a phenomenologicapusly derived expressions, we arrive at a well defined en-
way as follows(i) Start with the RPA expressiai8) for the  tirely classical description, the classical two-component
collisionless plasma(ii) Replace the frequency by the — model plasmdaCTCMP), which is determined by the classi-
complex variablew+i/7 where the real number has the ~cal counterpart of the Hamiltonia(2)
meaning of a relaxation time which can be introduced in a
phenomenological wayiii) To fulfill conservation laws, in
particular the conservation of particle numbers, an expres-
sion for the polarization function can be considered,

2
p, 1 €,85
H_g 2m + EaﬁE;&a 47760|Fa_Fﬂ|
X (1—exd —|F,—Fal/Aypl). (26)
X2k, 0+i/7)x2(k,0) . L ~ "
0 i/ 0 . Introducing now the scalin@{=H/kgT, p= p/(m,?kBT) )
Xe(ko+il7) =iorxe(k,0) 23) and¥=r/a with a=(47n/3) 3, and the dimensionless pa-
rameters?\aB=AaB/a, the Hamilton function26) reads
A derivation of this result using the method of the non-

X('\:/"O(k,w)=(l—iw7')

equilibrium statistical operatdtl7] was given recently18]. — mep2 T €.€p
This way, a closer connection to the microscopic description H=2 — o + 2wt 2k %
can be given, and further conserved or slowly varying quan- ¢ Mo S [P
tities can be taken into account, see {l£8). - o~
The inclusion of particle number conservation within the X(1—exfd = [ —TglAup]). (27)

method of the nonequilibrium statistical operator allows also )

for a frequency-dependent relaxation time. This way, aresul't:or fixed massesm=m, and me, and Eharge$i=—ee
similar to Eq.(23) can be derived, where the inverse relax- =€, the system depends on the parametegg, but onn,T
ation time 1f-is replaced by the complex collision frequency only through the classical plasma paramekerFor A,z
v(w). Thus, in the long-wavelength limit the correct, micro- <1, weakly coupled systems are characterized'k§1 and
scopically calculated polarization functidpaper ) will be nonideal ones by'=1. As the CTCMP can be completely
reproduced. Therefore we expect that also for finite values dfreated by classical mechanics, molecular dynaniMp)

k a reasonable approximation is achieved. simulations, see, e.g.20], provide a suitable tool to study
The resulting Mermin polarization function, as derived in the full many-body dynamics of these systems, in particular
[18], is atI'=1. During the last decades MD simulations have been
_ o 0 successfully applied to various strongly coupled plasmalike
0 o Xc(K,2) xc(K,0) systems as the classical one-component pla@&P or (bi-
xe (Kw)={1- ") i® - nary) ionic mixtures, see, e.g[21-23. The procedure is
x9(k,2) — ——x2(k,0) conceptually very simple: thi; ions (protong andN, elec-

v(w) (24) trons{r,, P, a=1,...N, N=N;+ N} just follow the clas-

sical equations of motion with the mutual interactidis
Z=w+tiv(w)=w—Imv(w)+iRev(w).

df  Me~

To get the RPA-Mermin susceptibility for a two-component d_~ = m—Pa,
system interacting via the potentidl..(q), we have to re- t “
place the polarization functiog2(k,w) in Eq. (9) by Eq. ~
(24). As a result we obtain dpa _ 9 r €.€4

- dt I e| B7a €F, =Ty
X K, @)

A N (Vi + Vet 2Ve) X(A-e=IraTelfAagl ) (29

1- X"V Xi %oV + xe X7 Q5 VedVii —Va)

which are integrated numerically. The dynamics of the
CTCMP, as given by the scaled dimensionless equations

(For shortnessy andk have been dropped on the right-hand (28), with t=t(kgT/m.a®)*? depends only on the param-

side) It should be mentioned that fd— 0 the correct mi- etersI’ andﬁaﬁ.

croscopic expression foy,q(0,0), based on the given ap- The MD simulations contain, without restrictions on the
proximation for v(w), is reproduced. Results for the re- strength of the interaction, all correlation effects, dynamic

(29
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screening, close collisions, and multiparticle correlationsyhereN=N;+N,. Transforming®(k,t) into the frequency

They do not rely on a spatial grid and there is no restrictiongomain, we finally obtain the dynamic structure factor
in the spatial resolution. On the other hand, the expense

grows quadratically with the particle numbNrbecause the R 1 o

long-ranged Coulomb part of the force is to be evaluated S(k,w)zz—f d3rf dt(p(F"+1,t' +1)
separately for each pair of particles. The available computing n -
power thus limits the computation to at most a few thousand N (KT wt)
particles. In order to approximate an infinite system by a Xp(f',t'))e

finite particle number, the particles are packed into an el- o

ementary cubic simulation box of lengthand this box is —f
continued periodically in all three spatial directions. Thus, a
particle is replaced by a cubic lattice of particles and the
Coulomb part of the interaction by an Ewald sum of Cou-Wheren=n;=n,. Of course, this Fourier transform has to be
lomb interactiong24,25|. The limited simulation box intro- Performed numerically, which restricts the time integral in
duces, however, a largest length scale on which collectiv&d- (30) to the simulation timer and introduces the usual
phenomena can be explored and a discrete set of a||OWE§j’tif_aCtS and proble_ms related to numerical inte_gral transfor-
wave vectorsk=2A/L with the smallest possible wave mations{28]. We will resume this when comparing the MD

numberk=27/L. In units of the inverse screening length res_:_JkI]ts W'ih tlhe_ an?l¥t|cal treatmﬂe;n& N.= 250 particles of
i.e., the inverse of the Debye Ilengthkx=1/\p € actual simufations run wit; = Ne= particles o

_ _ . each species with the proton-electron mass ratidm
=(ne?legkgT)Y?,  kik=2m\p/L scales like k/k s - e
o<N*1’31“911’32. Thus smalk/ « arl()a only accessible for large =1836 over a typical time ofr=360wp,l. The dynamic

(andN). This limitation becomes a serious problem with de-Structure factor is evaluated at constant total energy in an

creasingl’. But then one leaves the nonideal regime anywayfauiliorium state of the system, which is prepared by a pre-

and can continue with simpler methods. It is a general fea(_:eding sufficiently long simulation at constant temperature.

ture, that MD simulations are particularly suited for the case! "€ Shown results typically represent an ensemble average
of strong coupling and become inefficient, if not impossible,over 10,...,20 mdmdu_al simulations. The error is deduced
just where weak coupling approaches are valid. from the fluctuations in the ensemble~of events. In all pre-

Equations(28) are solved using a standard velocity-Verlet Sented simulations the same parameterg=A,z/a have
algorithm [20]. But for particles which come very close to been used. Guided by the quantum statistical derivaBs
each other, in particular for the attractive ion-electron inter-of the effective potentiall) whereA ,zx(m,z) 2 we de-
action, the arising large forces require a strong reduction ofined them through7\a[;=(mie/maﬁ)”zﬂie with a fixed
the time step which slows down the numerical propagation}. —0.4 and the reduced Masses, =M, mg/(Mg+mpg),
This is avoided by introducing a separate treatment of clos?e K. =0.013 andk .= 057
collisions, which takes advantage of the fact that the time™™" " ee
scales in the close collision region are much shorter than
those for the system as a whole. The close colliding particles VI. ANALYTICAL EXPRESSIONS
are thus propagated as subsystems with a much reduced time VERSUS MD SIMULATION RESULTS
step[26,27]. The accuracy and stability of the simulation
runs are monitored using the total enerly The outlined
scheme ensures the conservatioriofvith an accuracy typi-
cally better than 10° at a global time stepAt 1
=0.0086v, 5, Where wp o= (ne?/mqeg)/?=(3T)(kgT/ Sqq(K @)= = —— 1M xgq(K,®). (31)
mea?)*? is the electronic plasma frequency. nBw

In MD simulations, observables are measured as time av-
erages over a certain time interval and/or as ensemble averor the classical version of the response functigg(k, »)
ages over different initial configurations. To determine thewe apply two different models, the common RR& with
dynamic structure factor from the classical trajectoriesz= and the RPA-Mermin susceptibility25) with z=w

i . .0 . .
{F,(t)} we first sample for different possible vectdtshe +iv(w) as frequency argument igc(k,2) (7), which is

Fourier transfornpi(t)=3 e, exf —ik-7,(t)] of the charge taken in the limith —0 given by the expression
density p(F,t)=3 ,e,85[F—T,(t)] as a function of time.

dtd(k,t)e'“t, (30

In the classical limit as investigated in the MD simula-
tions the fluctuation-dissipation la®) modifies to

- 0 = — i
Then the density-density autocorrelation functidk,t) is X3k, 2)= = neBLL+iVaxw(xo)1, (32
calculated from a time average over the simulation time |
and an ensemble average denoted pyver different runs with
with varying initial microscopic configurations as
_mB 2z 33
Xec= 2 E (33
DK = — 1fdt'( (e ), (29
1 - N T 0 pk p*k ’ and
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FIG. 2. Dynamic structure factofﬁqq(k,w)/e2 for an electron-proton model plasma in the RP&qg. (8)] and in the Mermin-like
approximation[Eg. (25)] with dynamically screened dynamic collision frequency""A w), Eq. (16), for different parameter values of
I'k/k. (@ TI'=0.5,k/k=0.51.(b) '=1,k/k=0.51.(c) I'=2,k/k=0.25.(d) '=1, k/k=0.36.

2 (x high frequency tail of S"RPAk,w) with dynamically
1+ \/J dtexp(tz)l. (34)  screened collision frequency lays above the other results.
70 In Fig. 2 the dynamic RPA-Mermin structure factor
Sir Ak, w) (31), (25) with the dynamically screened colli-

The influence on the dynamic collision frequency on the dy-5'0" frequency " w) (16) is compared with the com-
namic structure factoS(k, ) is depicted in Fig. 1, upper men RPA structure factof8) and the results of the MD
part. We start from the collisionless RPA expression. Undefimulations(29),(30) at differentl” andk/ « values. The error
the influence of the statig" 2" (19) the peak in the structure bars to the MD data represent the fluctuations in the en-
factor S"RPA(k, w) is broadened and slightly shifted towards Semble of individual simulation runs. With increasifigand
lower frequencies. This effect is partially canceled by intro-decreasing significant differences between the MD results
ducing the frequency-dependent static screening, leading ®@nd the collisionless RPA structure factor develop, indicating
the dynamicr™B°(w) (18). The structure factor starts at a much stronger damping of the plasmon mode at increasing
the same static limit as the previous one but due to the vamonideality of the TCMP. In contrast to the collisionless
ishing values forvBo™(w) abovewy, . it merges with the  RPA the theoretical values for the dynamic RPA-Mermin
RPA structure factor at higher frequencies. Hence, the peastructure factor follow this trend very well and are in very
has also a frequency shift but it appears smaller than in thgood agreement with the simulation data concerning position
case of a statie™?". Improving the screening by dynamic and width of the peak. Differences between the simulation
contributions the peak becomes broader again and slightlgiata andsg*qRPA(k,w) appear on the high frequency side for
asymmetric because the collision frequendyR"Aw) (16) k/k=0.51, where it seems that the influence of collisions are
surpasses the static valué “" around wéﬂ,e and decreases slightly overestimated at higher frequencies. In the case of
with the same asymptotic behavior a85°™(w). Thus, the smallerk values no such differences arise.

w(x)=exp —x?)
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o Simulation
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FIG. 3. Log-log plot of the dynamic structure factagq(k,w)/e2 and comparison with an asymptotel/w’ [Eq. (15)] for different
parameter valuega) I'=2, k/k=0.25.(b) I'=1, k/ x=0.36.

In Fig. 3 the asymptotic behavior &;q(k, ) is investi- As an important test, we checked for the RPA-Mermin
gated. WhileSf{"(k, ) vanishes exponentially the dynamic susceptibility(25) exact properties as, e.g., the sum rule
RPA-Mermin structure facto®;,"""(k,w) drops down with
the asymptote 17 (15). This is again in good agreement e2 = P
with the simulation data. Due to the unavoidable fluctuations — | dow®Syyk,o)=- 52 ). (39
of the MD simulation data and the usual restrictions of nu- €0 Jo K
merical Fourier transforms, the accessible frequency domain
for the dynamic structure factor as obtained from the simu-Table | shows the actual values as obtained for different
lations is, however, restricted to frequencies belew to  parameters and demonstrates that the RPA-Mermin suscep-
10 wpe- tibility obviously fulfills the f-sum rule within the numerical

But at even stronger coupling the present theoretical aperrors.
proach becomes questionable. For 2 it starts to underes-
timate the influence of collisions as a damping mechanism,
probably because only electron-ion collisions are included VIl. CONCLUSIONS

and pair correlation effects are neglected. Thus, for higher  previous work concerning the response function in the

values the theory predicts a more pronounced peak compargghg-wavelength limit and the dynamic collision frequency

to the simulation, as shown for instance in Fig. 4. (papel has been extended to finite wave numbers. For this
the Mermin approach has been utilized which is based on the

06 v o .r=4.'0’.k/.K=.0'51. . continuation of RPA expressions to complex frequencies en-
' : ! ! ! ! suring conservation laws. In the present paper, microscopic
N - o Simulation approaches to the dynamic collision frequency were em-
’ \\ —— s ") | ployed in order to incorporate the quantum statistical ap-
\ w RPA' proach to the dynamic structure factor in the long-
0.4 ! — Squ’ (k.0 wavelength limit. The Mermin-like approach using a
3 complex collision frequency appears to be a robust and fea-
Sj: sible procedure, which guarantees exact properties such as
ch TABLE |. Check of the frequency sum rulgEq. (35)] for
02 7 SiPAk, ) [Eq. (25)] with the dynamic collision frequenchEq.
(16)], corresponding to the parameter values considered in Figs.
2—-4. The analytical integral value is normalized to 1.
S e r k/ k Sum
%90 0.5 1.0 15 2.0 25
o, 0.5 0.505 1.001
1.0 0.505 1.001
FIG. 4. Plot of the dynamic structure fact&qq(k,w)/e2 at 1.0 0.357 1.001
strong coupling =4k/xk=0.51). The Mermin-like approxima- 2.0 0.252 1.003
tion [Eq. (25)] overestimates the plasmon peak but is able to repro- 4.0 0.357 1.001

duce the high frequency tail of the simulation.
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sum rules and reproduces the correct behavior in limiting Special properties of the dynamic structure factor such as
cases. sum rules and the high-frequency behavior have been
The analytical approach has been compared witlthecked. In particular, it is found that a finite value for the
molecular-dynamics simulations. Because the MD simulathird-moment sum rule can be obtained only using a dynamic
tions were done on the level of classical dynamics, a twocollision frequency, in contrast to the original Mermin ap-
component model plasma was considered replacing the Coyroach based on a frequency-independent relaxation time.
lomb potential by a model potential which allows for a The predicted analytical behavior in the high-frequency limit
classical limit. For this classical model plasma, MD simula-js also seen from the simulation if the numerical accuracy is
tions are an appropriate and powerful numerical tool for asufficiently high.
treatment of the full many-body dynamics without restric-  The results presented here are also of importance for the
tions on the strength of the interaction. They contain dy-reatment of quantum systems. While an exact treatment of
namic Screening, close CO||iSi0nS, and multiparticle Correla'quantum dynamics is out of reach in current numerica' Simu-
tions and are particularly suited for investigating the|ation techniques, the analytical approach given in this paper
dynamic properties of strongly coupled systems With1.  gjlows for a rigorous quantum treatment. On the other hand,
Comparing results for the dynamic structure factor wethe region of applicability of analytical results to strongly
found that the analytical theory in the classical limit and thecoup|ed p|asmas can be found on the basis of Comparison

MD simulations are in good agreement for moderate valuegith MD simulations as performed in the present work.
of the plasma parametdi<1. Deviations arise for higher

values ofl" as shown, e.g., fof =4. This is expected since

higher-order correlations in the calculation of the collision ACKNOWLEDGMENT

frequency have been neglected so far. It should be stressed

that a reasonable agreement between analytical and simu- We would like to thank the DFG for support within the
lated results is achieved only using a complex dynamic colSchwerpunktprogramm SPP1053 “Wechselwirkung inten-
lision frequency responsible for the shift and broadening ofiver Laserstrahlung mit Materie{Grant No. ZW 57/2-1,

the plasmon peak. Ro 905/15-2.
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